The role of host gender in the pathogenesis of Cryptococcus neoformans infections

Abstract

Cryptococcus neoformans (Cn) is a pathogenic yeast and the cause of cryptococcal meningitis. Prevalence of disease between males and females is skewed, with males having an increased incidence of disease. Based on the reported gender susceptibility differences to Cn in the literature, we used clinical isolates from Botswanan HIV-infected patients to test the hypothesis that different gender environments exerted different selective pressures on Cn. When we examined this data set, we found that men had significantly higher risk of death despite having significantly higher CD4(+) T lymphocyte counts upon admittance to the hospital. These observations suggested that Cn strains are uniquely adapted to different host gender environments and that the male immune response may be less efficient in controlling Cn infection. To discriminate between these possibilities, we tested whether there were phenotypic differences between strains isolated from males and females and whether there was an interaction between Cn and the host immune response. Virulence phenotypes showed that Cn isolates from females had longer doubling times and released more capsular glucoronoxylomannan (GXM). The presence of testosterone but not 17-$β$ estradiol was associated with higher levels of GXM release for a laboratory strain and 28 clinical isolates. We also measured phagocytic efficiency, survival of Cn, and amount of killing of human macrophages by Cn after incubation with four isolates. While macrophages from females phagocytosed more Cn than macrophages from males, male macrophages had a higher fungal burden and showed increased killing by Cn. These data are consistent with the hypothesis that differential interaction between Cn and macrophages within different gender environments contribute to the increased prevalence of cryptococcosis in males. This could be related to differential expression of cryptococcal virulence genes and capsule metabolism, changes in Cn phagocytosis and increased death of Cn-infected macrophages.

Publication
PLoS One